Manual de Estudio
Cátedra de Fisiopatología

Autores: Dra. Romina Lorena Gay
Prof. Dr. Gustavo Juri
Prof. Dra. María Elisa Dionisio. de Cabalier
Unidad 1
Introducción a la Patología.
Índice

Introducción a la Patología ... - 4 -
Citológia: ... - 4 -
Técnicas Histológicas: ... - 5 -
Principios Basicos. .. - 5 -
Etiología... - 5 -
Patogenia ... - 6 -
Cambios Morfológicos... - 6 -
La Unidad del cuerpo humano, la célula.. - 6 -
Definiciones. .. - 6 -
Causas de lesión celular .. - 8 -
Lesión celular aguda.. - 11 -
Lesión reversible ... - 11 -
Lesión cellular crónica... - 13 -
a. Trastornos Del Desarrollo ... - 14 -
Agenesia: ... - 14 -
Aplasia: .. - 15 -
Hipoplasia: ... - 15 -
b. Trastornos del mantenimiento celular: .. - 15 -
Atrofia: .. - 15 -
Hipertrofia: ... - 16 -
Hiperplasia: ... - 16 -
c. Trastornos de la diferenciación celular: .. - 17 -
Metaplasia: .. - 17 -
Protoplasia: .. - 19 -
Anaplasia: ... - 19 -
Célula Muerta .. - 20 -
Necrosis.. - 20 -
Necrosis de licuación o de liquefacción ... - 21 -
Necrosis coagulativa.. - 21 -
Necrosis caseosa .. - 22 -
Necrosis fibrinoides... - 22 -
Apoptosis. ... - 22 -
Envejecimiento celular .. - 23 -
Introducción a la Patología.

Patología:
(Griego Pathos, enfermedad, Longos: tratados) Es el estudio de la naturaleza de las enfermedades, especialmente referido a los cambios estructurales y funcionales que presentan las células, tejidos, órganos, aparatos o sistemas. Las enfermedades pueden definirse como la pérdida del equilibrio anatómico, funcional y psíquico. La ruptura de esta armonía se manifiesta como un síndrome (conjunto de signos y síntomas).

Son elementos Diagnósticos, de la Anatomía Patológica:

Las Biopsias y Pieza quirúrgica u operatoria.

Piezas Operatorias: Obtenida por la extracción de un órgano o parte del mismo con fines terapéuticos.

Biopsias: Extracciones de un trozo de tejido de un ser vivo con fines de diagnóstico. Cuando la lesión se extirpa completamente, con buen margen de tejido sano, se cumplen fines diagnósticos y terapéuticos a la vez

Tipos de Biopsias:
- Por incisión: cuando secciona un fragmento o trozo de la lesión
- Por Escisión: extracción completa de la lesión
- Por Punción: muestra extraída con aguja o trócar, que secciona un pequeño cilindro de 1 a 1,5 cm de largo por 1 mm de diámetro. Esta muestra resulta suficiente y está especialmente indicada para: hueso, ganglio linfático, pleura, hígado, riñón, próstata, etc.
- Por endoscopía: muestra extraída en el curso de un examen endoscópico.
- Por legrado, raspado o curetaje: ejemplo, de endometrio
- Por congelación o intraoperatoria: diagnóstico inmediato, control de bordes, verificación de metástasis. (generalmente se utiliza para la congelación de la muestra gas carbónico y coloración de la muestra con Azul de Toluidina). Con este diagnóstico inmediato el cirujano planifica la conducta quirúrgica a seguir.

Citología:
La citología exfoliata (descamación) de células epiteliales es útil para estudios funcionales (investigación de niveles hormonales) u oncológicos (investigación de las células malignas de ese tejido). Consiste en extender sobre un portaobjeto la muestra obtenida directamente (esputo), o por suave raspado (vagina), o del sedimento del un líquido centrifugado (orina, derrame pleural, etc). La técnica es simple: fijación con alcohol etílico común o alcohol éter, y coloración con diversos métodos. Los más usados son el de Papanicolaou y la Hematoxilina Eosina.
Técnicas Histológicas:
Las técnicas histológicas tienen la finalidad de resaltar las estructuras normales y patológicas, configurando patrones estructurales particulares que caracterizan a cada enfermedad. Por eso es necesario el uso de distintas técnicas y coloraciones por ejemplo: Hematoxilina – eosina, para la histología normal, Técnicas de anilina especiales como el tricrómico de Masson para fibras. Técnicas de Histoquímica: con el PAS, a distintos ph, pone de manifiesto sustancias que forman parte de las células. Para demostrar bacterias se puede usar la técnica de Ziehl-Nilsson o la de Gram. Para Hongos se puede utilizar impregnación argénctica.

La microscopía electrónica, nos informa de los cambios ultraestructurales de la célula.

La inmunohistoquímica, utiliza anticuerpos marcados que se fijan a antígenos presentes en las células o tejidos estos antígenos pueden ser hormonas, bacterias, otros anticuerpos, virus, etc... Esta técnica es bastante específica para detectar agentes etiológicos o para identificar células o componentes tisulares.

Principios Basicos.

Tradicionalmente, el estudio de la anatomía patológica se ha dividido en patología general y patología sistemica. La primera se ocupa de las reacciones básicas de las células frente a los estímulos anormales que son la base de todas las enfermedades. La segunda examina la respuesta específica de los órganos y tejidos especializados frente a estímulos más o menos definidos.

Los 4 aspectos de un proceso patológico que forman el núcleo de la anatomía patológica son:
- La causa, etiología
- Los mecanismos de su desarrollo, fisiopatogenia
- Las alteraciones estructurales inducidas en las células y órganos del cuerpo, cambios morfológicos.
- Las consecuencias funcionales de los cambios morfológicos.

Etiología

Hay dos clases principales de factores etiológicos: intrínsecos o genéticos y adquiridos (ej. infecciosos, nutricionales, químicos, físicos). El conocimiento o descubrimiento de la causa principal sigue siendo la piedra angular sobre la que puede comprenderse una enfermedad y desarrollarse nuevos tratamientos y medidas de prevención.
Patogenia

La patogenia se refiere a la secuencia de acontecimientos en la respuesta de la célula o tejido frente al agente etiológico, desde el estímulo inicial hasta la última expresión de la enfermedad. El estudio de la misma abarca desde la investigación genética, molecular, hasta la expresión de la misma en la fisiología.

Cambios Morfológicos

Se refiere a las alteraciones estructurales en células y tejidos que son característico de la enfermedad o diagnósticas del proceso etiológico.

Trastornos Funcionales y significado clínico.

La naturaleza de los cambios morfológicos y su distribución en los diferentes órganos o tejidos influyen sobre la función normal y determinan las manifestaciones clínicas (síntomas y signos), la evolución y pronóstico de la enfermedad.

La Unidad del cuerpo humano, la célula.

Prácticamente, todas las formas de lesión orgánica comienzan con alteraciones moleculares o estructurales en la célula. Las diferentes células de los tejidos interactúan constantemente unas con otras y es necesario un elaborado sistema de matriz extracelular para la integridad de los órganos. Las interacciones célula-célula y célula-matriz contribuyen de forma significativa a la respuesta frente a las lesiones, conduciendo en conjunto a una lesión tisular y orgánica, que es tan importante como la lesión celular a la hora de definir los patrones morfológicos y clínicos de la enfermedad.

Definiciones.

La célula normal está confinada en un rango muy estrecho de función y estructura por un programa genético de metabolismo, diferenciación y especialización; por las restricciones de las células vecinas, y por la disponibilidad de sustratos metabólicos. No obstante, es capaz de manejar las demandas fisiológicas normales (llamadas Homeostasis). Los estímulos fisiológicos más excusivos y algunos estímulos patológicos pueden llevar a una serie de adaptación celular fisiológica y morfológica, en la que se alcanza un estado nuevo pero claramente alterado, preservando la viabilidad de la célula y modulando su función en respuesta a tales estímulos. Ej: los músculos prominentes de los deportistas.

Por otro lado, si se exceden los límites de la respuesta adaptativa a un estímulo, o en ciertas circunstancias en la que la adaptación no es posible, se produce una serie de acontecimientos, denominados: lesión celular. La lesión celular es reversible hasta un cierto punto, pero si el estímulo persiste o es lo suficientemente intenso desde un principio, la célula alcanza el punto de no retorno y sufre una lesión celular irreversible y la muerte celular. Ej: si el aporte sanguíneo a un segmento del corazón se interrumpe por 15 min y después se reestablece, las células miocárdicas...
se lesionan pero pueden recuperarse y funcionar con normalidad. Sin embargo si el flujo sanguíneo no se reestablece hasta una hora después, sobreviene una lesión celular irreversible y muchas células miocardicas mueren.

Adaptación, lesión reversible, lesión irreversible y muerte celular pueden considerarse etapas de alteraciones progresivas de la función y estructura normal de la célula o estados celulares.

La muerte celular que representa el resultado final de la lesión celular, afecta a cualquier tipo de célula y es la principal consecuencia de la isquemia (falta de flujo sanguíneo), infección, toxinas y reacciones inmunitarias. Además es un elemento crucial durante la embriogénesis normal, el desarrollo de tejido linfóide y la involución inducida por mecanismos hormonales y representa el objetivo de las radioterapias y quimioterapia del cancer.

Existen dos patrones principales de muerte celular:
- La necrosis
- La apoptosis.

Los cambios celulares descriptos son patrones morfológicos de una lesión celular aguda inducida por diversos estímulos. Otro grupo de alteraciones subcelulares, que se producen principalmente en respuesta a estímulos crónicos; acumulación intracelular de diversas sustancias, que se producen como resultado de trastornos metabólicos celulares; calcificaciones patológicas, una consecuencia frecuente de la lesión celular y tisular y envejecimiento celular y muerte.

Respuestas celulares a la lesión.

<table>
<thead>
<tr>
<th>Lesión celular aguda. (Muy intensa y por un periodo de tiempo breve).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesión reversible</td>
</tr>
<tr>
<td>Lesión irreversible</td>
</tr>
<tr>
<td>Muerte celular: necrosis o apoptosis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesión celular crónica. (de menor intensidad, en un largo periodo de tiempo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptación celular: Atrofia, Hipertrofia, Hiperplasia, metaplasia</td>
</tr>
<tr>
<td>Acumulación intracelulares: lipidos, carbohidratos y proteínas.</td>
</tr>
<tr>
<td>Calcificaciones patológicas</td>
</tr>
<tr>
<td>Envejecimiento celular</td>
</tr>
<tr>
<td>Muerte celular: necrosis o apoptosis.</td>
</tr>
</tbody>
</table>
Causas de lesión celular.

Las causas de lesión celular reversible y de muerte celular oscilan entre la gran violencia física externa de un accidente de automóvil y las causas endógenas internas, como una leve carencia genética de una enzima vital que deteriora la función metabólica normal. La mayor parte de las influencias adversas se pueden agrupar en las siguientes categorías generales:

Privación de oxígeno:

La hipoxia, es una causa sumamente importante y común de lesión y muerte celular, afecta a la respiración oxidativa aerobia. La hipoxia se debe diferenciar de la isquemia, que representa una pérdida del aporte sanguíneo debido a la alteraciones del flujo arterial o reducción del drenaje venoso en un tejido. Al contrario que en la hipoxia, durante la cual puede continuar la producción de energía glucolítica, la isquemia compromete la disponibilidad de sustratos metabólicos (aportados por el flujo sanguíneo), entre ellos la glucosa. Por esta razón la isquemia suele producir la lesión tisular de una manera más rápida que la hipoxia.

Una causa de hipoxia es la oxigenación insuficiente de la sangre debido a insuficiencia cardiorrespiratoria. La pérdida de la capacidad trasportadora de oxígeno de la sangre, como en la anemia o en la intoxicación por monóxido de carbono (que produce una carbonmonoxihemoglobina estable que bloquea el trasporte de...
oxígeno), es una causa menos frecuente de privación de oxígeno. Según la gravedad del estado hipóxico, las células pueden adaptarse, sufrir lesión o morir. Ej: si se estrecha la arteria femoral, las células de los musculos esqueléticos de la pierna pueden disminuir su tamaño (atrofia). Esta reducción en la masa celular alcanza un equilibrio entre las necesidades metabólicas y el aporte de oxígeno disponible. Una hipoxia más grave induce lesión y muerte celular.

Agentes físicos.

Los agentes físicos comprometen el traumatismo mecánico, las temperaturas extremas (quemaduras y fríos intensos), los cambios subitos de la presión atmosférica, las radiaciones y el shock eléctrico, que serán desarrollados en la unidad correspondiente.

Agentes químicos y fármacos.

La lista de sustancias químicas que pueden producir lesión celular escapa a este apunte. Sustancias químicas simples como la glucosa y la sal en concentraciones hipertónicas, pueden causar una lesión celular de manera directa o por alteración de la homeostasis electrolítica de las células. Incluso el oxígeno es gravemente tóxico en concentraciones elevadas. cantidades muy pequeñas de agentes conocidos como venenos, como el arsénico, el cianuro o las sales de mercurio, pueden destruir un número suficiente de células en el trascursos de minutos u horas como para causar la muerte. Sin embargo otras sustancias forman parte de nuestra vida cotidiana: contaminantes ambientales, insecticidas, riesgos industriales y laborales, como el monóxido de carbono y el asbesto, e incluso la cada vez mayor variedad de fármacos terapéuticos.

Agentes infecciosos.

La gama de estos agentes va desde los virus submicroscópicos a los grandes cestodos. En la parte media del espectro se sitúan las rickettsias, bacterias, hongos y formas superiores de parasitos. Los mecanismos por los que este grupo heterogéneo de agentes biológicos causa lesión son diversas y se expondrán con mayor detalle en la unidad correspondiente.

Reacción inmunológicas.

Aunque el sistema inmunitario es útil en la defensa contra agentes biológicos, las reacciones inmunitarias pueden, de hecho, causar lesión celular. La reacción anafiláctica frente a una proteína extraña o un fármaco es un ejemplo importante de ello, y se supone que las reacciones frente a un autoantígeno endógeno son responsables de diversas enfermedades autoinmunes. (Unidad 4).

Trastornos genéticos.

Los defectos genéticos como causa de lesión celular son en la actualidad de gran interés para los biólogos. (unidad 4). La lesión genética puede provocar un defecto tan visible como las malformaciones congenitas asociadas al síndrome de down o bien puede dar lugar a alteraciones tan sutiles como la sustitución de un aminoácido.
en la hemoglobina S de la anemia de las células falciformes. Los diversos errores congenitados del metabolismo que surgen a partir de anomalias enzimáticas, generalmente una carencia enzimática, son ejemplos excelentes de lesión celular debida a alteraciones sutiles a nivel del ADN.

Desequilibrios nutricionales.

Los déficit calórico-proteicos causan una tremenda cantidad de muertes, principalmente entre poblaciones subdesarrolladas. A lo largo de todo el mundo se pueden encontrar déficit de vitaminas específicas. Los problemas nutricionales también pueden ser buscados por los propios pacientes, como en la anorexia nerviosa o en la inanición autoinducida. Irónicamente los excesos nutricionales también se han convertido en causa importante de lesión celular. Los excesos de lípidos predisponen a la arterioesclerosis, y la obesidad es una manifestación extraordinaria de la sobrecarga de algunas células del organismo con grasas. Además de los problemas de malnutrición y de la nutrición excesiva, la composición de la dieta contribuye de manera significativa a aparición de diversas enfermedades.
Lesión celular aguda.

Lesión reversible

Los mecanismos bioquímicos responsables de la lesión celular reversible y de la muerte celular son complejos. Como hemos visto la lesión de las células pueden tener muchas causa, y existen múltiples mecanismo que conducen a la muerte celular que interactuan entre sí. No obstante, debemos considerar varios principios que son relevantes para la mayor parte de las formas de lesión celular:

- La respuesta celular frente a estímulos nocivos depende del tipo de lesión, su duración y su gravedad.
- Las consecuencias de la lesión celular dependen del tipo, estado y capacidad de adaptación de la célula lesionada.
- Aunque no siempre es posible determinar el lugar bioquímico preciso sobre el que actúa un agente lesivo, cuatro sistemas intracelulares son particularmente vulnerables:
 1. El mantenimiento de la integridad de la membrana celular, de la que depende la homeostasis ionic y osmótica de la célula y sus organelas.
 2. La respiración aerobia, de la que depende la fosforilación oxidativa mitocondrial y la producción de trifosfato de adenosina (ATP).
 3. La síntesis de proteínas.
 4. La preservación de la integridad del aparato genético de la célula.
- Los elementos celulares y bioquímicos de la célula están tan estrechamente interrelacionados que, cualquiera que sea el punto preciso del ataque inicial, la lesión de un elemento da lugar a una amplia gama de efectos secundarios.
- Los cambios morfológicos de la lesión celular se hacen evidentes solo después de que se alteran alguno de los sistemas bioquímicos críticos del interior de la célula.

Morfología de la lesión celular reversible.

Con el microscopio óptico se puede reconocer dos patrones de lesión celular reversible: tumefacción o hinchazón celular y cambios grastos.

La tumefacción celular aparece siempre que las células son incapaces de mantener su homeostasis ionic y fluidos. Es la primera manifestación de casi todas las formas de lesión celular. Desde el punto de vista microscópico se puede observar pequeñas vacuolas claras en el citoplasma, estas vacuolas representan segmentos distendidos del retículo endoplasmático. Este patrón de lesión no letal se denomina cambios hidrópicos o degeneración vacuolar. Es reversible.

Causas:
- Hipoxia
- Infecciones con fiebre elevada
- Intoxicaciones con hidrocarburos clorados: cloroformo, tetracloruro de carbono.
- Falta de ingesta

Cátedra de Fisiopatología 2009
Mala absorción con diarreas, vómitos intensos
Hipocalemia
Quemaduras extensas

Cambios grasos, se produce en la lesión hipoxica y en diferentes formas de lesión toxica o metabólica. Se manifiesta por la aparición de vacuolas lipídicas pequeñas o grandes en el citoplasma. Aparece principalmente en las celulas implicadas en el metabolismo de las grasas o dependiente del mismo como el hepatocito (celula del higado) y la célula miocardica.

Causas:
- Trastornos nutritivos:
 Ingesta en exceso (aumento de lípidos exógenos): en los obesos, aunque en éstos los cambios grasos en células parenquimatosas no es un acompañante obligado. Además, en el obeso puede haber una “deficiencia relativa”de factores lipotrópicos en relación a la sobrecarga lipídica.
- Por inanición (aumento de lípidos endógenos). Paradójicamente se produce cuando hay trastorno en la ingesta, digestión, absorción
- Hipoxia: (se altera la respiración celular aerobia)
- Toxemias e infecciones con elevada hipertermia: (se lesionan ultra estructuras citoplasmáticas, en especial las mitocondrias).
- Hiperlipemias: en diabetes, síndrome nefrótico, hipotiroidismo, formas familiares, etc.
- Acción del alcohol: La ingesta crónica del alcohol es la principal causa de aparición de cambios grasos. Su acción es muy compleja y en parte se desconoce.
- Acción de otras sustancias:
 2. Hormonas corticoesteroideas: producen mayor movilización de las grasas endógenas

Los cambios ultraestructurales de la lesión celular reversible son:
- Alteración de la membrana plasmática, como por ejemplo vesiculación, despuntamiento y distorsión de las microvellosidades; formación de figuras de mielina y relajación de las adherencias intercelulares.
- Cambios mitocondriales, entre ellos hinchazon, rarefacción y la aparición de densidades amorfas pequeñas ricas en fosfolipidos.
- Dilatación del retículo endoplasmático, con desprendimiento y disgregación de los polisomas
- Alteraciones nucleares, con disgregación de los elementos granulares y fibrilares.
Lesión celular crónica.

Las células pueden responder a estímulos fisiológicos excesivos o a estímulos patológicos desarrollando diversas adaptaciones celulares fisiológicas y morfológicas.

En estas respuestas celulares de adaptación las células alcanzan un nuevo, aunque alterado estado de equilibrio preservando la viabilidad de la propia célula y modulando su función como respuesta a esos estímulos.

Existen numerosos mecanismos moleculares que intervienen en las adaptaciones celulares. Algunos de ellos se deben a la estimulación directa de las células por factores producidos por otras células o elaborados por la propia célula que sufre la estimulación, como ocurre el caso del crecimiento celular. Otros mecanismos implican la estimulación o inhibición de receptores celulares específicos implicados en el metabolismo de ciertos componentes.
Otros mecanismos moleculares se asocian a la inducción de síntesis de nuevas proteínas por las células efectoras, como ocurre en la respuesta de golpe de calor o en la respuesta crónica frente a la hipoxia.

Las adaptaciones también pueden implicar el cese de la síntesis de un tipo concreto de familia de proteínas y su sustitución por otro tipo, o bien la síntesis excesiva de alguna proteína; esto es lo que ocurre en las células que producen los diferentes tipos de colágeno y las proteínas de la matriz extracelular en la inflamación crónica y la fibrosis.

La adaptación afecta a todos los pasos del metabolismo celular de las proteínas: unión a receptores, transducción de señal, transcripción o traducción y regulación de la síntesis, almacenamiento y liberación de la proteína.

A continuación se exponen los cambios adaptativos más frecuentes en el crecimiento y diferenciación celular que son especialmente importantes en los estados patológicos:

a. Trastornos del desarrollo celular:
Agenesia, Aplasia, Hipoplasia, Distrofia, Displasia de Órgano

b. Trastornos del mantenimiento celular:
Atrofia, Hipertrofia, Hiperplasia

c. Trastornos de la diferenciación celular:
Metaplasia, Prosoplasia, Anaplasia, Displasia epitelial

a. Trastornos Del Desarrollo

La proliferación y la diferenciación celular rigen desde:
- El desarrollo de la vida intrauterina
- El crecimiento del niño
- El mantenimiento en el adulto

Los trastornos del desarrollo no guardan ninguna relación etiopatogénica con los trastornos adaptativos del mantenimiento. Los primeros forman un gran grupo de malformaciones que generalmente responden a etiologías genéticas, congénitas o desconocidas, y son causa frecuente de mortalidad neonatal. Sólo consideraremos tres de ellas a los fines de poder diferenciarlas de los cambios de adaptación tisular.

Agenesia:
Hay ausencia total de un órgano o parte de él, no existe ni el esbozo embrionario. Si el órgano es hueco se produce atresia. Las consecuencias pueden ser:

Si es órgano no vital: es compatible con la vida (ausencia de bazo, de vesícula biliar, etc.)

Si es órgano vital: dependerá si es órgano par o impar:
- **Impar:** la muerte se producirá in útero o al nacer. Ej. anencefalia: es ausencia casi total del cerebro y huesos de la bóveda craneal.

Cátedra de Fisiopatología 2009
• **pares:** (riñón, suprarrenales, etc.). Si es bilateral es incompatible con la vida; si es unilateral permitirá sobrevivir.

Aplasia:
Es una casi completa de un tejido u órgano, sólo existe el esbozo embrionario donde se individualizan tejidos fibro-adiposo y, en ocasiones, rudimentos parenquimatosos.

Hipoplasia:
Se refiere a un órgano o tejido que se ha desarrollado en grado diverso pero que nunca alcanzó su tamaño normal. Suele ser difícil diferenciar de la atrofia.

Distrofia

Displasia de Órgano

b. Trastornos del mantenimiento celular:
El hombre cuando se enferma, lo hace en forma integral, es decir no se enferma del hígado o del corazón, se enferma en su totalidad porque todos los órganos y sistemas están relacionados entre sí. Las repercusiones son anatómicas, histológicas, bioquímicas y funcionales, algunos de estos cambios dejan como resultado una adaptación celular a una nueva situación, en este caso secundaria a una patología pero también puede ser secundario a situaciones fisiológicas normales como son las modificaciones que se producen en la pubertad, senectud, embarazo, ejercicio físico, altura, etc.

Atrofia:
Es un mantenimiento del trastorno (adquirido) que se caracteriza por una disminución del tamaño de un órgano o un tejido después que a alcanzado su completo desarrollo. La atrofia puede ser:
- Por la disminución del tamaño de células parenquimatosas (atrofia simple).
- Por disminución del número de células parenquimatosas (atrofia numérica).
- Por disminución del número y tamaño celular (atrofia mixta).
Normalmente y dentro de ciertos márgenes, el tamaño y peso de un órgano también varía con:
La edad, el peso del individuo, la talla, el sexo, etc.

La atrofia es un proceso lento, de larga evolución, lo que la diferencia de destrucciones bruscas de tejidos como son los traumatismos, muerte celular por inyecciones, trastornos vasculares, etc.

La consecuencia de una atrofia es de importancia variable, dependerá de la causa, de la intensidad y de la extensión de la atrofia y de la importancia del órgano. Pueden ser reversibles o irreversibles.
Cualquier órgano puede ser afectado por la atrofia, pero lo son especialmente el músculo estriado esquelético y cardíaco, encéfalo, hígado, glándulas endocrinas y órganos sexuales.

Cátedra de Fisiopatología 2009
Cuando la atrofia es por desnutrición puede ser reversible. Las seniles serán irreversibles.
Podemos dividirlas en fisiológicas (involutorias) y en atrofias como respuesta a una patología. Cada una de éstas, a su vez, puede ser local o general según afecte a un órgano o a varios de ellos.

Hipertrofia:
Es el aumento de tamaño de un tejido u órgano por aumento de volumen de las células parenquimatosas. Ej.: Hipertrofia del músculo estriado

La dividiremos en dos grupos:
En respuesta a una demanda fisiológica y en adaptación a causas patológicas.

En respuesta fisiológica:
- El miometrio, durante el embarazo, alcanza gran tamaño. La fibra muscular lisa puede separar 200 micras y 4 veces su ancho. Concomitante suele haber algo de hiperplasia (la fibra conserva cierta capacidad proliferativa).
- Los músculos de los deportistas y el brazo del herrero son ejemplos de hipertrofia de la fibra estriada. La mayor carga de trabajo es realizada por mayor masa muscular.

En adaptación a causas patológicas:
Es una forma de compensación y se presenta en órganos huecos con pared muscular.
- En órganos con túnica de fibras musculares lisas: esófago, estómago, intestino, vejiga, etc. Como reacción a una obstrucción parcial y distal la pared proximal aumenta su espesor por hipertrofia compensadora de la capa muscular (posteriormente puede haber claudicación con atrofia por agotamiento).
- El corazón, ante un obstáculo proximal, se hipertrofia. Es una adaptación favorable que permite la sobrevida prolongada. Puede alcanzar hasta 1 kilo de peso (normal= 250 a 350 grs. según el sexo). Aumenta así su función en relación a la mayor demanda de trabajo. Las fibras aumentan los miofilamentos y las restantes ultra estructuras. Son causa frecuentes de hipertrofia cardiaca: la hipertensión arterial (la mayor resistencia periférica hipertrofia adaptativamente al ventrículo izquierdo); estenosis mitral (hipertrofia a la aurícula izquierda, congestiona al pulmón y secundariamente afecta al ventrículo derecho); enfermedades difusas del pulmón (hipertrofia al ventrículo derecho); etc. El problema de estas hipertrofias es que se acompañan de una disminución de la capacidad de reserva del corazón disminuyendo la capacidad de trabajo adicional. En éstas condiciones, si se produce sobreesfuerzos, bruscos o muy prolongados habrá claudicación.

Hiperplasia:
Es el incremento de tamaño de un tejido u órgano por aumento del número de las células parenquimatosas. Ejemplo: Hiperplasia de próstata.
Como en la hipertrofia consideraremos las fisiológicas y las de adaptación a una patología con el agregado de un 3° grupo: las formas no adaptativas.

En respuesta fisiológica:
- La glándula mamaria se hiperplasia durante el embarazo y la lactancia debido al estímulo de un complejo de hormonas placentarias, hipofisiarias y ováricas.
 Crecen los lobulillos, se ramifican los conductos terminales y aparecen estructuras glandulares.
- La médula ósea de habitantes de regiones de grandes alturas experimenta una hiperplasia compensadora a la menor tensión del oxígeno ambiental.

En respuesta de adaptación a una patología:
Es válido el ejemplo de hiperplasia de la médula ósea pero en precensia de patologías hipóxicas como algunas anemias, fibrosis pulmonares, etc.

Hiperplasias no adaptativas:
Son un grupo heterogéneo que por sí sólo constituyen una patología. No presentan ningún tipo de respuesta compensadora y por ello deberían ser excluidas. Citamos algunos ejemplos:
- Hiperplasia de endometrio: responde a un hiperestrinismo y producen menorragias y metrorragias. Algunas representan mayor riesgo para cáncer.
- Hiperplasia de mama: es una patología muy frecuente que también responde a un hiperestrinismo y algunas significan mayor riesgo para cáncer.
- Hiperplasia de próstata: es consecuencia de un desequilibrio hormonal en el proceso de envejecimiento (predominio estrogénico sobre los andrógenos). El peso normal de 15 a 20 grs. puede duplicarse y a veces superar los 100 grs. Aparece después de los 45 años y suele obstruir uretra prostática. En estos casos, si no es tratada, puede producir hipertrofia de vejiga urinaria, dilatación de los uréteres (mega uréteres), dilatación de la pelvis renal y atrofia bilateral de riñones. Estas obstrucciones favorecen la aparición de infecciones, cistitis, pielonefritis, etc.

C. Trastornos de la diferenciación celular:

Metaplasia:
Es un cambio adaptativo, reversible, en el cual un tejido de tipo adulto (epitelial o mesenquimático) es sustituido por otro también adulto y de similar naturaleza. Esto ocurre como reacción a estímulos anormales.

Causas de metaplasia:
- Por lo general es producida por irritaciones de distinto tipo e intensidad.(ej. tabaquismo)
- La avitaminosis A es un factor coadyuvante pero no se conoce el mecanismo.
- Con frecuencia la causa es desconocida.

Tipos de metaplasia:
Metaplasia epitelial:
Metaplasia epidermoide: es el cambio de un epitelio de revestimiento, sea simple, seudoestratificado o transicional en otro tipo plano estratificado.
Son ejemplos:
- En bronquitis crónica, fumadores, etc. suele cambiarse el epitelio seudoestratificado por un plano estratificado.
- Cambio del epitelio cilíndrico simple mucosecretante de endocervix por otro estratificado. Es el más frecuente y la causa es desconocida.
- Cambio del epitelio transicional vesical por otro estratificado plano cuando hay irritación por litiasis, inflamaciones, etc.
Leucoplasia: es una forma de metaplasia epidermoide. Consiste en la aparición de capa granulosa y córnea. El término es clínico porque la capa córnea, en un medio húmedo como lo son las mucosas, toma un color blanquecino (de plaquia = placa). En anatomía patológica se la designa como hiperqueratosis. Es una lesión que en ciertas localizaciones presenta mayor riesgo de cáncer. Se interpreta que la metaplasia epidermoide significa un cambio adaptativo, es un epitelio más resistente a los irritantes físicos y químicos, pero ofrece los siguientes problemas:

- El epitelio seudoestratificado traqueo-bronquial, al perder cilias y mucina, disminuye sus mecanismos de defensa.
- Puede obstruir conductos muy pequeños, especialmente los pancreáticos.
- Representa un cierto riesgo de neoplasias.

Prosoplasia: es un término poco usado en la práctica; se refiere a la transformación de un tejido en otro más complejo y con mayor diferenciación. Un ejemplo es la médula ósea en las anemias hemolíticas. No sólo es hiperplasia en su sitio normal sino que pueden aparecer focos hematopoyéticos, en bazo, hígado, médula ósea adiposa, etc.

Anaplasia: Es un término que reservamos para las células cancerosas. No tiene ninguna relación con los procesos adaptativos.
Célula Muerta

Necrosis.

Necrosis (del griego muerte) es la muerte hística local dentro de un organismo vivo. Las causas con las mismas que producen lesión celular:

- hipoxia
- agentes físicos
- agentes químicos
- agentes biológicos
- trastornos inmunitarios
- trastornos genéticos
- trastornos nutricionales

Muerte celular es la terminación de todas las funciones vitales de la célula. Estas no concluyen al unísono y así como la muerte somática hay disociación en las persistentias vitales, también lo hay en la muerte celular. Por ejemplo, la síntesis proteica puede perdurar un tiempo posterior a la cesación del mecanismo energético celular. En cambio la necrosis sería el conjunto de alteraciones morfológicas posteriores a la muerte y que permiten la comprobación histológica de la misma, esto incluye causas, mecanismos, cese funcional y el posterior cambio morfológico.

Con los métodos de tinción rutinarios no se descubren cambios de necrosis hasta 6 a 12 horas después de la muerte celular. Con métodos histoquímicos especiales pueden encontrarse modificaciones sólo 1 a 2 horas después de la muerte, especialmente inactivación de enzimas dehidrogenasas, oxidasas, etc. Se denomina tiempo de lactancia o de manifestación al lapso existente entre la muerte celular y la aparición de alteraciones estructurales indicadoras de la misma. Por ejemplo, si un paciente hace un infarto de corazón, un sector del mismo ha muerto, pero si la muerte somática se presenta dentro de las 6-8 hs. de producido el infarto, no habrá representación morfológica del mismo que sea determinable con los métodos rutinarios.

El aspecto morfológico de la necrosis es el resultado de dos procesos esencialmente concurrentes:

1. digestión enzimática de la célula. Las enzimas catalíticas proceden de los lisosomas de las células muertas, en cuyo caso la digestión enzimática se denomina autólisis, o de los lisosomas de los leucocitos que han acudido a la zona de necrosis, denominándose en este caso heterólisis.
2. desnaturalización de las proteínas

Los cambios de necrosis se presentan en citoplasma y en el núcleo:

- En el citoplasma se modifican su estructura y su afinidad tintorial. Por desnaturalización de proteínas y pérdidas de ribosomas se produce aumento de la eosinofilia. Lo último en desaparecer son los límites celulares y termina en disolución.
• En el núcleo se presenta, en un comienzo, condensación de la cromatina y posteriormente aparecen algunos de éstos cambios:
 1. picnosis (picno: grueso, espeso) el núcleo se reduce y la cromatina se condensa
 2. cariolisis (cario: núcleo y lisis: disolución) es la disolución de la cromatina por acción hidrolítica de las enzimas de los lisosomas
 3. cariorrexis: (rexis: rotura) es la fragmentación del núcleo previa condensación de la cromatina.

Tampoco aquí es posible señalar un límite neto entre el daño reversible y el mortal irreversible porque hay algunos cambios que son comunes tanto a la célula lesionada como a la muerta.

Destino del tejido necrosado:
• Reabsorción y reemplazo por tejido conectivo fibroso quedando una cicatriz. Se denomina reparación. Más raramente se reemplaza por tejido igual al necrosado: se trata de una regeneración.
• Puede no reabsorberse y quedar rodeado de una cápsula de tejido adiposo, etc.
• En ocasiones el contenido necrótico se calcifica.

Consecuencias:
• Perdida de la función del sector necrosado. La importancia dependerá del tamaño de lo necrosado y función del órgano, de su reserva funcional y de la capacidad de producir reparación o regeneración. En éste sentido tiene gran importancia la necrosis de corazón y en cerebro. (no hay regeneración)
• Predisposición mayor a las infecciones.
• Posibilidad de perforación en órganos huecos cuando la necrosis abarca todo el espesor de la pared.
• Tardío: retracción del tejido cicatrizal, lo que origina trastornos estéticos (lesiones en rostro) e impedimentos funcionales (estenosis en órganos huecos)

Tipos de necrosis: de licuación, de coagulación y caseosa.

Necrosis de licuación o de liquefacción
(Transformación de sólido en líquido). Los tejidos necrosados se digieren y transforman en un líquido espeso. Ejemplo: en cerebro, después de un infarto se produce un reblandecimiento porque el tejido nervioso tiene más agua y lípidos (las grasas no se coagulan como las proteínas). Otra ejemplo es la supuración. Se produce porque se concentra gran cantidad de leucocitos polimorfonucleares neutrófilos que aportan sus enzimas líticas. El pus está formado por necrosis colicuativa y piocitos (son polimorfonucleares neutrófilos necrosados). Histológicamente es una masa amorfa de tejidos necrosados sin ningún tipo de estructuras.

Necrosis coagulativa
Es la forma más común. Se origina por una desnaturalización de las proteínas celulares. Se vuelven insolubles y resistentes a la proteólisis. No es conocido el mecanismo de la inhibición de las enzimas autolíticas. Histológicamente se observan...
células con citoplasma acidófilo homogéneo pero sin núcleos: el contorno celular se conserva parcialmente. También se mantiene la estructura general del tejido. Un ejemplo es el infarto de riñón. El examen del tejido muerto permite reconocer el órgano: hay “sombras” de vasos, glomérulos y túbulos a modo de estructuras fantasmas pero las células individuales no son reconocibles. La imagen microscópica se la compara con una ciudad sin habitantes. Esta coagulación no es permanente, pasado un tiempo hay licuación y fagocitos por macrófagos. Ejemplos son: infartos anémicos (corazón, riñón, bazo, etc.)

Necrosis caseosa

Es una forma especial de necrosis que tiene características macro y microscópicas bien definidas. Ocupa un lugar intermedio entre las dos anteriores. El aspecto es de una sustancia pastosa de color blanco-grisáceo, uniformemente granular. Semeja al queso y de ahí su nombre (latín caseum: queso). Como él, la sustancia caseosa es rica en proteínas y lípidos. Toma color rosado con la eosina y puede conservar restos de fibras elásticas y colágenas. Histológicamente no tiene ningún tipo de estructuras hísticas ni celulares. Los ejemplos son: en primer lugar tuberculosis; también el goma de la sífilis y la necrosis de algunos tumores malignos.

Necrosis fibrinoides

La sustancia fibrinoides es amorfa, acelular y eosinófila como la fibrina. Se presenta en el tejido conectivo y en paredes vasculares asociada a focos de necrosis. En su constitución química intervienen proteínas: fibrinógeno, albúmina, inmunoglobulinas y complemento que se depositan entre las fibras colágenas tumefactas. Se la encuentra en un amplio grupo de enfermedades del colágeno, enfermedades inmunitarias hiperérgicas y en la pared vascular de la hipertensión maligna. Su estudio se realizará en el grupo de enfermedades del tejido conjuntivo.

Apoptosis.

Muerte celular programada. Es una forma de muerte celular, cuyo objetivo es el de eliminar las células del huésped que ya no son necesarias a través de la activación de una serie coordinada y programada de acontecimientos internos, que se inicia por un grupo de productos genicos cuya función específica es precisamente esta. Se puede observar en los siguientes contextos generales:

1. durante el desarrollo
2. como mecanismo homeostático para el mantenimiento de las poblaciones celulares en los tejidos
3. como mecanismo de defensa en las reacciones inmunitarias
4. cuando las células son lesionadas por enfermedad o por agentes lesivos
5. en el envejecimiento

Es responsable de numerosas respuestas fisiológicas, adaptativas y patológicas entre ellas las siguientes:

1. la destrucción programada de las células durante la embriogenesis
2. la involución dependiente de hormonas en el adulto
3. delección celular en las poblaciones celulares en proliferación
4. muerte celular en tumores
5. muerte de los neutrofilos en la reaccion inflamatoria aguda
6. atrofia parenquimatosa de los organos tras la obstrucción de un conducto
7. lesion celular en ciertes enfermedades virales, etc.

Morfología.

Los siguientes rasgos morfológicos caracterizan a las células que sufren apoptosis:
- constriccion celular: la celula tiene un tamaño menor, el citoplasma es denso
 y las organelas estan más agrupadas.
- Condensación de la cromatina: este es el rasgo más caracteristico de la
 apoptosis, la cromatica se agrega a la periferia, por debajo de la membrana
 nuclear, produciendo dos o más fragmentos.
- Formación de vesiculas citoplasmaticas y cuerpos apoptoticos: la celula
 apoptotica sufre fragmnetacion en numerosos cuerpos apoptoticos rodeados
 por membrana y compuesto de citoplasma y organelas muy agrupadas, con o
 sin fragmento nuclear.

La apoptosis al contrario que la necrosis no induce inflamación, lo que hce mas dificil
su dteccion histológica.

Envejecimiento celular.

Con los años se producen alteraciones fisiológicas y estructuralles en casi todos los
organos y sistemas. El envejecimiento de los individuos esta influido en gran
medida por factores geneticos, dieta, aspectos sociales y la aparicion de
enfermedades relacionadas con la edad, como la ateroesclerosis, la diabetes y la
artrosis. Ademas, existen pruebas suficientes de que la alteraciones inducidas por el
envejecimiento en las células son un componente importante del envejecimiento del
El envejecimiento celular puede representar la acumulación progresiva con los años de lesiones subletales que pueden conducir a la muerte celular o, al menos, a una disminución de la capacidad de las células para responder a la lesión.

Diversas funciones celulares se deterioran progresivamente con la edad. La fosforilación oxidativa por las mitocondrias está reducida, como lo están también la síntesis de los ácidos nucleicos, de las proteínas estructurales y enzimáticas, de los receptores celulares y de los factores de transcripción. Las células envejecidas tienen una capacidad reducida para captar nutrientes y para reparar las lesiones cromosómicas. Las alteraciones morfológicas de las células envejecidas consisten en núcleos anormalmente lobulados e irregulares, mitocondrias vacuolizadas pleomórficas, disminución del retículo endoplasmático y deformación del aparato de Golgi. Al mismo tiempo existe una progresiva acumulación del pigmento lipofuscina.

Aunque se han propuesto varios mecanismos para explicar el envejecimiento celular, las teorías más recientes se centran en dos procesos entre sí:

1. la existencia de un reloj genético, que controla el envejecimiento
2. los efectos de la exposición continua a factores exógenos que dan lugar a la acumulación progresiva de lesiones celulares y moleculares.

Quedan muchas incógnitas acerca de los mecanismos de envejecimiento celular que serán aclaradas en los próximos años de investigación y descubrimientos.